
A Plan to Fix Local Variable Debug Information in GCC

Alexandre Oliva
Red Hat

aoliva@redhat.com

2008-06-01 v968

Abstract

As GCC gained more and more optimization passes,
the lack of infrastructure to retain a correspondence be-
tween source-level and run-time constructs has become
a more serious problem. In spite of the growing need
for debugging and monitoring optimized code, this has
become more and more difficult, because GCC fails to
emit location information for so many local user vari-
ables, and emits locations that make it seem like vari-
ables hold unexpected values at certain points in the pro-
gram.

This article presents a plan to address these problems,
based on annotations introduced early in compilation, in
such a way that optimization passes, at little additional
effort, keep them accurate and as complete as reasonable
all the way to the end of compilation.

1 Introduction

The DWARF Debugging Information Format [3] deter-
mines the ways a compiler can communicate the loca-
tion of user variables at run time to debug-information
consumers such as debuggers, program analysis tools,
run-time monitors, etc.

One possibility is that the location of a variable is fixed
throughout the execution of a function. This is generally
good enough for unoptimized programs.

However, for optimized programs, the location of a vari-
able can vary. The variable may be live at some parts
of a function, even in multiple locations simultaneously.
At other parts, it may be completely unavailable. At
others, its value may not be available at any run-time lo-
cation, but it may still be computable out of constants
and other values available at run-time.

DWARF encoding permits the use of location lists
for varying locations: tuples with possibly-overlapping
ranges of instructions, and location expressions that de-
termine the locations (or values, as in accepted [2] and
proposed [1, 4] extensions) of the variable within each
range.

Historically, GCC started with the simpler, fixed-loca-
tion model. In fact, back then, widely-used debug infor-
mation formats couldn’t represent anything better than
this.

More recently, GCC gained code to keep track of vary-
ing locations, and to emit DWARF debug information
accordingly. Unfortunately, very many optimization
passes discard information that would be necessary to
emit correct and complete variable location lists.

Coalescing, scalarizing, substituting, propagating, and
many other transformations prevent the late-running
variable tracker from doing a complete or even accurate
job. By the time it runs, many variables no longer show
up in the retained annotations, although they’re still con-
ceptually available.

The variable tracker can’t handle sharing of a location
by multiple user variables, multiple active locations for
the same variable, and it can’t tell when a variable is
overwritten, if the assignment is optimized away. This
last limitation is inherent to a model based on inspect-
ing only actual code, and trying to make inferences from
that. In order to be able to represent not only what re-
mained in the code, but also what was optimized away,
combined, or otherwise apparently removed, additional
information needs to be retained.

This paper describes an approach to maintain this infor-
mation, as follows. In Section 2, we discuss reasons
to improve GCC and compilers in general in this re-
gard. Section 3 sets the goals for the ongoing work.

1

Section 4 proposes extensions to GCC’s internal rep-
resentations so as to retain the additional information
needed for better debug information, and Section 5 dis-
cusses how to extract better debug information from this
additional information. Section 6 discusses how the pro-
posed approach deals with optimizations that reorder
code. Section 7 discusses the stability and testability
concerns taken into account when devising this plan,
whereas Section 8 discusses other worries expressed in
early evaluations of this proposal. Examples of annota-
tions retained in small optimized programs are given in
Section 9, followed by a summary of the conclusions in
Section 10.

2 Motivation

Debug information was initially meant for debuggers,
to enable interactive debugging sessions to locate errors
in programs by stopping execution at key points and in-
specting internal state without having to go through a
recompile, relink, restart cycle so as to add the desired
output at the relevant points.

Nevertheless, debugging often involved compiling the
program without optimization, because debug informa-
tion wasn’t rich enough to map source constructs to ex-
ecutable constructs in optimized programs.

Nowadays, programs are often big enough that rebuild-
ing them without optimization in order to debug them
would take weeks, not counting the time to duplicate
the software, hardware, network and timing conditions
that led to the error in the first place.

On top of that, information about errors is often avail-
able in the form of core files generated by the optimized
programs used in production. It is essential to be able
to extract information about the error from these files, at
the very least to guide the attempts to duplicate the prob-
lem in controlled scenarios until it is fully understood.
Poor debug information in optimized programs reduces
tremendously the usefulness of such core files.

Add to this the growing use of dynamic monitors that
rely on debug information to dynamically introduce the
evaluation of predicates in programs at run time, to de-
tect error conditions and compliance with specifications
or regulations, to collect and log useful information, and
even to aid debugging and understanding of complex
programs, their behavior, and their performance.

Some of these monitors are essentially scripted interac-
tions with preexisting symbolic debuggers, using what-
ever interfaces such debuggers provide. Other monitors
rely on far lower-level interception and inspection ma-
chinery, having to perform the mapping from source-
level symbols to run-time locations themselves.

In all of these cases, the mapping between symbols and
locations is provided by debug information. If debug
information is incomplete, these tools may fail to find
the values they were asked to monitor.

Even worse is the case of incorrect debug information,
because then the tools may appear to be functioning
properly, but operating on incorrect values, thus missing
situations they were supposed to catch, generating inac-
curate logs, and otherwise failing to abide by specifica-
tions and regulations. Buggy debug information causes
bugs.

3 Goals

While human users of interactive debuggers can often
tolerate and compensate for incompleteness and incor-
rectness of debug information, automated monitoring
tools aren’t normally equipped with human adaptabil-
ity, nor our ability to accumulate experience for detec-
tion and tolerance for errors. Therefore, in this work we
have set some goals that won’t just make debug infor-
mation more useful for humans, but also usable in such
automated tools.

3.1 Correctness

Ensure that, for every user variable for which we emit
debug information, the information is correct, i.e., if it
provides location or value expressions for a variable in a
certain range of instructions, then, for all instructions in
that range, the values specified in the debug information
must correspond to the value the user variable is bound
to.

We say a variable is bound to a value when control flow
crosses a theoretical instruction placed at the point of
the program in which the user variable is, or should be
have been, assigned that value. This theoretical instruc-
tion is maintained roughly in place regardless of opti-
mizations that move, remove, or otherwise optimize any
code generated to implement the source-level variable
modification. This is further detailed in Section 6.

2

3.2 Completeness

Try to ensure that, for every user variable, at any given
point in the program,

• if the variable is live at any location (possibly more
than one), all such locations are noted in debug in-
formation as locations for the variable at that point;

• otherwise, if the variable is bound to a known con-
stant at that point, the value of the constant is noted
in debug information as the value of the variable;

• otherwise, if the variable is bound to a value that, at
that point, is computable from other available con-
stants and values of available locations, at least one
expression that computes the value is noted in de-
bug information as the value of the variable;

Note that this is not related with the theoretical max-
imum coverage afforded by an unoptimized program,
that we dub theoretical completeness. Some compiler
transformations make it impossible for certain variables
to be represented in debug information.

Although one could argue that this makes debug infor-
mation incomplete, if a variable is completely removed
from the program, then removing it from debug infor-
mation is necessary for correctness, and the absence
does not fail the completeness criterion because the vari-
able no longer matches any of the cases above.

These criteria have to do with representing source-level
concepts that are present in the optimized program, and
not representing those that are not. They are not about
representing source-level concepts that are optimized
away or transformed so profoundly that they can no
longer be represented.

3.3 Run-time efficiency vs. debuggability

Debug information is supposed torepresent the result
of optimizations, notguide it. When a user requests the
compiler to perform certain optimizations, they should
be applied to the greatest possible extent, regardless
of whether debug information is being generated, of
whether performing them would make for poorer debug
information.

This is not to say that there shouldn’t be options that
limit the effect of certain transformations so as to get
richer debug information, but rather that these are op-
tions that control optimization, not debug information.
Options that control the generation of debug informa-
tion must not prevent optimizations, harm run-time effi-
ciency, or modify the executable code in any way.

3.4 Compile-time efficiency

This proposal strives to avoid using additional memory
and CPU cycles that would be needed only to generate
debug information, when compiling without generating
debug information.

A secondary goal is to minimize the memory and CPU
overhead incurred when generating debug information,
but this is often at odds with the previous paragraph.
This is further discussed in Section 8.

4 Internal Representation

For historical reasons, GCC has two significantly differ-
ent, even if nearly isomorphic, internal representations:
Trees and RTL. This decision has required a lot of code
to be duplicated for low-level manipulation and simpli-
fication of each of these representations.

Since tracking variables and their values must start early
and be carried throughout the complete optimization
process, to ensure correctness, it might seem tempt-
ing to introduce yet another representation for debug
information, decaying both isomorphic representations
into a single debug information representation. The
drawbacks would be additional duplication of internal-
representation manipulation code, and the possibility of
increasing memory use out of the need for representing
information in yet another format.

Another concern is that even the simplest compiler
transformations may need to be reflected in debug in-
formation. This might indicate a need for modifying ev-
ery point of transformation in every optimization pass so
as to propagate information into the debug information
representation. This is undesirable, because it would be
very intrusive.

But then, keeping references to the correct values, ex-
pressions, or variables as transformations are made is

3

precisely what optimization passes have to do to per-
form their jobs correctly. Finding a way to take ad-
vantage of this is a very non-intrusive way of keeping
debug information accurate. In fact, most transforma-
tions wouldn’t need any changes whatsoever: uses of
variables in debug information can, in most optimiza-
tion passes, be handled just like any other uses.

Once this is established, a possible representation be-
comes almost obvious: statements (in Trees) or instruc-
tions (in RTL) that assert, to the variable tracker, that
a user variable is represented by a given expression, or
that bind a user variable to a value:

DEBUG var => expr

By var, we mean a Tree expression that denotes a user
variable, for now. We envision trivially extending it to
support components of variables in the future.

By expr, we mean a Tree or RTL expression that com-
putes the value of the variable at the point in which
the statement or instruction appears in the program, and
that the variable is expected to hold until (i) execution
crosses another such annotation for that variable, or (ii)
the value becomes no longer computable, because all
locations containing it or previously usable to compute
it are no longer provably usable to compute it. For ex-
ample, if the variable is bound to the value of a certain
hardware register, and the register is subsequently mod-
ified, but the bound value is not known to be available
elsewhere, then the variable is regarded as unavailable
at that point.

A special value needs to be specified, for each debug
annotation representation, that denotes an unavailable
variable. Although in some cases this condition can
be detected implicitly, as described above, in others we
must be able to describe that, at the point of the bind-
ing, the value that should be bound to the variable is not
available, for example, because it was completely opti-
mized away and it’s not even computable any more, or
because the compiler has been unable to represent or to
keep track of the expected value of the variable at that
point.

Furthermore, it might be useful to represent the expres-
sion as a list of expressions, to establish larger equiva-
lence classes to begin with, and to get better resistance
against complete loss of values.

It may also be useful to distinguish lvalues from rval-
ues in the representation, but for now we’re keeping it
simpler, to see if we can make do without the additional
complexity.

5 Generating debug information

Generating initial annotations when entering SSA is
early enough in the translation that the program will
still reflect very reliably the original source code. We
will only emit such annotations for user variables that
are GIMPLE registers, i.e., variables that are present in
the source code, that are not addressable, and that hold
scalar values. Addressable or non-scalar user variables
don’t have varying locations, so we don’t need these
annotations to generate correct debug information for
them.

As optimizations transform the code, the initially-trivial
mapping between such user variables and implementa-
tion locations gets more and more fuzzy. Even when
the compiler retains mnemonic names that resemble
user variable names for such implementation locations
(GIMPLE registers, RTL pseudos, hardware registers,
and stack slots), it is important to keep in mind that
source and implementation concepts are in different
name spaces, and that the implementation locations can-
not be assumed to remain associated with the user vari-
ables they were initially named after.

The purpose of the annotations is precisely to establish
a mapping from user variables to implementation con-
cepts without preventing optimizations. The choice of
focusing not so much on locations, but rather on values,
is intended to minimize the impact of optimizations on
the ability to represent the value a variable holds, which
is what debug information consumers are most often in-
terested in. Actual locations are a slightly secondary
issue, that we expect to be able to infer from the value
binding annotations, but that may require more explicit
annotations, as in the lvalue-vs-rvalue discussion above.

After every assignment to user variables that are GIM-
PLE registers, we emit aDEBUG statement intended to
preserve, throughout compilation, the information that,
at that point, the user variable was bound to the value of
that expression. In other words, after putting an assign-
ment such as the following in SSA form, we emit the
debug statement below right after it:

4

x_1 = whatever;
DEBUG x => x_1

Likewise, at control flow merge points, for each PHI
node associated with a user variable we introduce in the
initial SSA representation, we emit an annotation:

x_3 = PHI <x_1(1), x_2(2)>;
DEBUG x => x_3

Then we let Tree optimizers do their jobs. Whenever
they rename, renumber, coalesce, combine, or otherwise
optimize a variable, they will most likely automatically
update debug statements that mention them as well.

In the rare cases in which the presence of such a state-
ment might prevent an optimization, we need to adjust
the optimizer code such that the optimization is not pre-
vented. This most often amounts to skipping or other-
wise ignoring debug statements. In a few rare cases,
additional code might be needed specifically to adjust
debug statements.

During conversion to RTL, the debug statements also
decay to debug instructions, and the Tree value expres-
sions are trivially converted to RTL. Conceptually, how-
ever, it’s still the same representation: a binding from
user variable to expression. RTL optimizers will most
often adjust debug instructions automatically.

The exceptions can be handled often at no cost: the test
for whether an element of the instruction stream is an
instruction or some kind of note (that never needs up-
dating) is a range test, in its optimized form. By placing
the identifier for a debug instruction at one of the limits
of this range, testing for ranges that include or exclude
debug instructions requires identical code, except for the
constants.

Since most code that tests forINSN_P and handles
instructions can and should match debug instructions
as well, in order to keep them up to date, we extend
INSN_P so as to match debug instructions, and mod-
ify the code in the exceptions that need to skip debug
instructions, by using an alternate test, with the same
meaning as the original definition ofINSN_P. These
simple and non-intrusive changes are relatively com-
mon, but still, by far, the exception rather than the rule.
As in Tree level, there are transformations that require

special handling of debug annotations, but these are
even rarer.

When optimizations are completed, including register
allocation and scheduling, it is time to take the data
collected in debug instructions and emit debug infor-
mation out of them. Conceptually, the debug instruc-
tions represent points of assignment, at which a user
variable ought to evaluate to the annotated expression,
maintained throughout compilation. However, when the
value of a user variable is available at more than one
location (think, for example, stack variable temporarily
held also in a register), it is important to note it, so that,
if a debugging session attempts to modify the variable,
all copies are modified.

The idea is to use some mechanism to determine equiv-
alent expressions throughout a function. At debug in-
structions, we assert that the value of the named vari-
able is in the equivalence class the expression belongs
to. As we scan basic blocks forward and find that ex-
pressions in an equivalence class are modified, we re-
move them from the equivalence class, and thus from
the list of available locations for the variables that hold
that value. When members of an equivalence class are
copied, we add the copies to equivalence class. When
equivalent expressions are computed, we add them to
the equivalence class. At function calls andvolatile
asm statements, we remove non-function-private mem-
ory slots from equivalence classes. At function calls,
we also remove call-clobbered registers from all equiva-
lence classes. When no live expression remains in the
equivalence class that represents a variable, it is un-
derstood that its value is no longer available. At ba-
sic block confluences, we combine information from the
end states of the incoming blocks, forming, combining,
or propagating equivalence classes.

When multiple variables are held in the same equiva-
lence class, some care must be taken to determine which
locations can be used as modifiable copies of a variable,
which hold incidental copies, and which are read-only
values. More investigation is needed to design strate-
gies to make this partitioning, so that the end result is
accurate debug information.

Given this plan, debug information should come out
as complete as possible, save for transformations that
require special handling to update debug annotations
properly, but that haven’t been improved to do so yet.

5

6 Scheduling and reordering

Optimizing code involves a lot of moving code around.
Basic block reordering, loop unrolling, and other forms
of code duplication, movement, or removal that affect
placement of sequences of instructions (but not so much
the instructions to be executed in a given execution path)
have no effect on the debug information annotations pre-
sented in this article. When moving, duplicating, or re-
moving code along these lines, debug annotations can
be regarded just like regular instructions.

Other than that, debug annotations should generally re-
main in place, serving as guides for what would amount
to the natural execution order of the program, regard-
less of optimizations that reorder instructions, or move
instructions out of loops or conditionals.

For example, if we move to an unconditional block a
computation that was only to be performed inside a con-
ditional, the debug annotation that binds the variable to
the conditionally-computed value should remain in the
conditional block, or be made conditional itself. Like-
wise, if some computation is hoisted out of a loop, the
debug annotation should remain in the loop, where the
user expects the assignment to take place.

Moving a computation to an earlier point shouldn’t re-
quire modification in subsequent debug annotations, but
moving it to a later point may, especially when the move
crosses the annotation. For example, if an assignment
instruction, sayx = y, is moved past the end of a loop,
debug annotations that refer tox in their expressions
probably need to have it replaced withy, so that the
binding remains with the same value in spite of the as-
signment move.

Transformations that reorder instructions within a sin-
gle block, such as instruction scheduling, don’t require
modification of annotations. Debug annotations should
be maintained after the assignments they refer to, if
the assignments are still nearby, and this is trivially ac-
complished through scheduling dependencies. Other
than that, debug annotations should generally have high
scheduling priority, so that they are kept right after the
corresponding assignment, or moved early when an as-
signment was hoisted out of a loop, but without causing
the instructions they depend on to be scheduled differ-
ently.

That said, reordering debug annotations may be undesir-
able and surprising at times. Care must be taken to not

schedule too early debug instructions for assignments
whose values are optimized away or unrepresentable: if
these have no dependencies, they might be moved too
early, to the point of making the range of the previous
binding an empty range.

7 Testability

Since debug annotations are added early, and, in most
cases, maintained up-to-date by the same code that op-
timizers use to maintain executable code up-to-date, de-
bug annotations are likely to remain accurate throughout
compilation.

The risk of this approach is that the annotations get in
the way of optimizations, thus causing executable code
to vary depending on whether or not debug information
is to be generated. The risk of varying code could be re-
moved at the expense of generating and maintaining de-
bug annotations throughout compilation and just throw-
ing them away at the end. This is undesirable, for it
would slow down compilation without debug informa-
tion and waste memory while at that.

Therefore, we’ve added testing mechanisms to the com-
piler build machinery to detect cases in which the pres-
ence of debug annotations would cause code changes.

The bootstrap-debug Makefile target, by de-
fault, compiles the second bootstrap stage without de-
bug information, and the third bootstrap stage with it,
and then compares all object files after stripping them, a
process that discards all debug information.

Furthermore,make bootstrap4-debug, after a
successfulmake bootstrap-debug followed by
make prepare-bootstrap4-debug-lib-g0,
rebuilds all target libraries without debug informa-
tion, and compares them with the third stage’s target
libraries, built with debug information.

At the time of this writing, both tests pass on platforms
such asx86_64-linux-gnu, i686-linux-gnu,
ia64-linux-gnu, andppc64-linux-gnu.

Additional testing mechanisms should be built in, to ex-
ercise a wider range of internal GCC behaviors and ex-
tensions, for example, by comparing the compiler out-
put with and without debug information while compil-
ing all of its testsuite.

6

Even if testing mechanisms fail to catch an error, the
generation of debug annotations is controlled by a com-
mand-line option, so that any code changes caused by it
can be easily avoided, at the expense of the quality of
the debug information.

Testing for accuracy and completeness of debug infor-
mation can be best accomplished using a debugging en-
vironment. For example, writing programs of increasing
complexity, adding function-call orasm probe points to
stabilize the internal execution state, and then examin-
ing the state of the program at these probe points in a
debugger, shall let us know how accurate and how com-
plete variable location information is.

Measuring accuracy is easy: if you ask for the value
of a variable, and get a value other than the expected,
there’s a bug in the compiler. If you get “unavailable,”
this can still be regarded as accurate, for locations are al-
ways optional. However, it might be incomplete. Telling
whether the variable was indeed optimized away, or
whether the value is available or computable but the in-
formation is missing, is a harder problem, but it’s not
part of the accuracy test, but rather of the completeness
test.

The theoretical-completeness score that an unoptimized
program could get is quite often unachievable for an op-
timized version of the same program, not because the
compiler is doing a poor job at maintaining debug infor-
mation, but rather because the compiler is doing a good
job at optimizing it, to the point that no possibility re-
mains of computing the value of certain variables at cer-
tain points in the program. This should be taken into ac-
count when designing completeness tests, such that they
measure completeness with regard to what’s available in
the optimized program, rather than in comparison with
theoretical completeness.

8 Concerns

8.1 Memory consumption

Keeping more information around requires more mem-
ory. In order to generate correct debug information,
more information needs to be retained throughout com-
pilation.

The only way to arrange for debug information to not re-
quire additional memory is to waste memory when not

generating debug information. But this is probably un-
desirable, even if it would minimize the risks of debug
annotations affecting optimizations and modifying the
generated code.

Therefore, the better debug information we want, the
more memory overhead we’re going to have to tolerate.

Of course at times we can trade memory for efficiency,
using representations that are more compact and more
computationally expensive, when we can’t have both
compactness and efficiency.

At other times, we may trade memory for maintainabil-
ity. For example, instead of emitting annotations as soon
as we enter SSA mode, we could emit them on demand,
i.e., whenever we deleted, moved, or significantly mod-
ified an SSA assignment for which we would have emit-
ted a debug annotation. Additional memory would be
needed to mark assignments that should have gained an-
notations but haven’t, and care must be taken to make
sure that transformations aren’t made without leaving a
correct (even if still implied) debug annotation in place.
It is not clear that this would save significant memory,
for a large fraction of relevant assignments are probably
modified or moved anyway, so it might turn out to be
a maintainability and performance loss for small mem-
ory gains. More investigation is required to determine
whether this is indeed the case.

Worst case, a user may trade memory for debug infor-
mation quality: if the memory use of this scheme turns
out to be too high for some scenario, the user can disable
debug information annotations through a command-line
option, or disable debug information altogether.

8.2 Intrusiveness

Given that nearly all compiler transformations need to
be reflected in debug information to keep it accurate,
any solution that doesn’t take advantage of the existing
strength of optimizers to also maintain debug informa-
tion is bound to require changes all over the compiler.

This applies perhaps not so much for Tree-SSA passes,
that are relatively well-behaved and use a narrow API
to make transformations, but very clearly so for RTL
passes, that very often modify instructions in place.
Passes that reuse locations formerly assigned to user
variables as unrelated temporaries should be handled
with extra care.

7

Even when we do use the strength of optimizers to main-
tain debug information up to date, there are exceptions
in which detailed knowledge about the transformation
taking place enables us to adjust the annotations prop-
erly, if possible, or to discard location information for
the variable otherwise.

It is just not possible to hope that information can be
kept accurate throughout compilation without any sig-
nificant effort from optimizers, or even through a trivial
API for a debug information generator. A number of the
exceptions that require detailed knowledge about the on-
going transformation would be indistinguishable from
other common transformations that would have very dif-
ferent effects on debug information. At this point, any
expectations of lower intrusiveness by use of such an
API vanish.

By letting optimizers do their jobs on debug annotations,
and handling exceptions only at the few locations where
they are needed, trivially in most such cases, we keep
intrusiveness at a minimum.

Of course we could get even lower intrusiveness by ac-
cepting errors in debug information, or accepting the
generation of different code depending on debug in-
formation command-line options. But these options
shouldn’t be considered seriously.

8.3 Complexity

The annotations are conceptually trivial and they can be
immediately handled by optimizers. It is hard to imag-
ine a simpler design that would still enable us to get right
cases such as those in the examples below.

Worrying about the representation of debug annotations
as statements or instructions, rather than notes, is miss-
ing the fact that, most of the time, we do want the an-
notations to be updated just like statements and instruc-
tions, rather than never updated like notes.

Worrying about the representation of debug annotations
in-line, rather than an on-the-side representation, is a
valid concern, but it’s addressed by the testability of the
design, and the in-line representation is highly advanta-
geous, not only for using optimizers to keep debug infor-
mation accurate, but also for doing away with the need
for yet another internal representation and all the efforts
into keeping it accurate.

8.4 Optimizations

As discussed in Section 3, correct and more complete
debugging information isn’t supposed to disable opti-
mizations. Outputting debug information or not isn’t
supposed to make any difference whatsoever as to the
executable code produced by the compiler.

We want to ensure that whatever debug information
the compiler generates actually matches the executable
code, and that it is as complete as viable.

We don’t want to disable optimizations so as to preserve
variables or code, so that they could be represented in
debug information and provide for a debugging experi-
ence more like that of code that is not optimized. If de-
bug information disables any optimization, that’s a bug
that needs fixing.

Optionally disabling optimizations that lower the qual-
ity of debug information is a separate feature, and one
that may benefit from this work, but that won’t be ac-
complished through this work.

It is worth mentioning that, while testing the implemen-
tation of this design, a number of opportunities for opti-
mization that GCC missed were detected and fixed, oth-
ers were merely detected so far, and at least one arti-
ficial optimization limitation, intended to get better de-
bug information, was kept in place. Once the improved
infrastructure is in place and in wide use, this kind of
limitation could be removed, for the new infrastructure
enables the optimization to be applied to its fullest ex-
tent.

9 Examples

It is desirable to be able to represent constants and other
optimized-away values, rather than stating that variables
have values they can no longer have:

int x1 (int x) {
int i;

i = 2;
f(i);
i = x;
h();
i = 7;
g(i);

}

8

Even if variablei is completely optimized away, a de-
bugger can still print the correct values fori if we keep
annotations such as:

(debug (var_loc i (const_int 2)))
(set (reg arg0) (const_int 2))
(call (mem (symbol_ref f)))
(debug (var_loc i unknown))
(call (mem (symbol_ref h)))
(debug (var_loc i (const_int 7)))
(set (reg arg0) (const_int 7))
(call (mem (symbol_ref g)))

In this case, before the call toh, not only the assign-
ment toi was dead, but also the value of the incom-
ing argumentx had already been clobbered. Ifi had
been assigned to another constant instead, debug infor-
mation could easily represent this, through an extension
to DWARF version 3 that enables location lists to con-
tain value expressions, in addition to location expres-
sions.

Another example that covers PHI nodes and condition-
als:

int x2 (int x, int y, int z) {
int c = z;
whatever0(c);
c = x;
whatever1();
if (some_condition)

{
whatever2();
c = y;
whatever3();

}
whatever4(c);

}

With SSA infrastructure, this program can be optimized
to:

int x2 (int x, int y, int z) {
int c;
bb 1
whatever0(z_0(D));
whatever1();
if (some_condition) {

bb 2
whatever2();
whatever3();

}
bb 3
c_1 = PHI <x_2(D)(1), y_3(D)(2)>;
whatever4(c_1);

}

Note how, without debug annotations,c is only initial-
ized just before the call towhatever4. At all other
points, the value ofc would be unavailable to the de-
bugger, possibly even wrong, if prior assignments toc
had survived optimization.

If we were to annotate the SSA definitions forward-
propagated intoc versions as applying toc, we’d end up
with all of x_2, y_3, andz_0 applied toc throughout
the entire function, in the absence of additional markers.

Now, with the annotations proposed in this paper, what
is initially:

int x2 (int x, int y, int z) {
int c;
bb 1
c_4 = z_0(D);
DEBUG c => c_4
whatever0(c_4);
c_5 = x_2(D);
DEBUG c => c_5
whatever1();
if (some_condition) {
bb 2
whatever2();
c_6 = y_3(D);
DEBUG c => c_6
whatever3();

}

bb 3
c_1 = PHI <c_5(D)(1), c_6(D)(2)>
DEBUG c => c_1
whatever4(c_1);

}

9

is optimized into:

int x2 (int x, int y, int z) {
int c;
bb 1
DEBUG c => z_0(D)
whatever0(z_0(D));
DEBUG c => x_2(D)
whatever1();
if (some_condition) {

bb 2
whatever2();
DEBUG c => y_3(D)
whatever3();

}
bb 3
c_1 = PHI <x_2(D)(1), y_3(D)(2)>;
DEBUG c => c_1
whatever4(c_1);

}

and then, at every one of the inspection points, we get
the correct value for variablec.

10 Conclusion

This design enables a compiler to emit variable loca-
tion debug information that complies with the DWARF
version 3 standard (although it can further benefit from
proposed extensions), and that is likely to be as com-
plete as theoretically possible, with an implementation
that is conceptually simple, relatively easy to introduce,
trivial to test, and easy to maintain in the long run. Not
wasting memory or CPU cycles during non-debug com-
pilation is a welcome bonus.

References

[1] John Bishop and Jim Blandy. Calculate value in
DWARF expression, April 2008.
http://dwarfstd.org/ShowIssue.php?
issue=071227.1.

[2] Cary Coutant. Constant expressions in location
lists, April 2007.http://dwarfstd.org/
ShowIssue.php?issue=070426.1.

[3] Free Standards Group. DWARF Debugging
Information Format, Version 3, December 2005.
http://dwarfstd.org/Dwarf3.pdf.

[4] Alexandre Oliva. Constant expressions in location
lists, December 2007.
http://dwarfstd.org/ShowIssue.php?
issue=071227.1.old.

10

